Tumor-specific CD4+ T cells are activated by "cross-dressed" dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines.

نویسندگان

  • Brian P Dolan
  • Kenneth D Gibbs
  • Suzanne Ostrand-Rosenberg
چکیده

Tumor cells that constitutively express MHC class I molecules and are genetically modified to express MHC class II (MHC II) and costimulatory molecules are immunogenic and have therapeutic efficacy against established primary and metastatic cancers in syngeneic mice and activate tumor-specific human CD4+ T lymphocytes. Previous studies have indicated that these MHC II vaccines enhance immunity by directly activating tumor-specific CD4+ T cells during the immunization process. Because dendritic cells (DCs) are considered to be the most efficient APCs, we have now examined the role of DCs in CD4+ T cell activation by the MHC II vaccines. Surprisingly, we find that DCs are essential for MHC II vaccine immunogenicity; however, they mediate their effect through "cross-dressing." Cross-dressing, or peptide-MHC (pMHC) transfer, involves the generation of pMHC complexes within the vaccine cells, and their subsequent transfer to DCs, which then present the intact, unprocessed complexes to CD4+ T lymphocytes. The net result is that DCs are the functional APCs; however, the immunogenic pMHC complexes are generated by the tumor cells. Because MHC II vaccine cells do not express the MHC II accessory molecules invariant chain and DM, they are likely to load additional tumor Ag epitopes onto MHC II molecules and therefore activate a different repertoire of T cells than DCs. These data further the concept that transfer of cellular material to DCs is important in Ag presentation, and they have direct implications for the design of cancer vaccines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پروتئین شوک حرارتی؛ کاندید واکسن سرطان

Background: Tumor cells express antigens that can be recognized by immune system as foreign particles. Heat shock proteins (HSPs) are molecular chaperones that bind to tumor antigens and mediate their uptake into antigen presenting cells. Methods: This articles is a review article and its data has been collected and categorized from the articles in the field of cancer immunotherapy. All the ar...

متن کامل

Human Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation

Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...

متن کامل

Retrovirally transduced mouse dendritic cells require CD4+ T cell help to elicit antitumor immunity: implications for the clinical use of dendritic cells.

Presentation of MHC class I-restricted peptides by dendritic cells (DCs) can elicit vigorous antigen-specific CTL responses in vivo. It is well established, however, that T cell help can augment CTL function, raising the question of how best to present tumor-associated MHC class I epitopes to induce effective tumor immunity. To this end, we have examined the role of MHC class II peptide-complex...

متن کامل

Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells.

The activation of naive CD8+ T cells has been attributed to two mechanisms: cross-priming and direct priming. Cross-priming and direct priming differ in the source of Ag and in the cell that presents the Ag to the responding CD8+ T cells. In cross-priming, exogenous Ag is acquired by professional APCs, such as dendritic cells (DC), which process the Ag into peptides that are subsequently presen...

متن کامل

Liposome and polymer-based nanomaterials for vaccine applications

Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 176 3  شماره 

صفحات  -

تاریخ انتشار 2006